
Decisions, decisions, decisions…

Converting a nucleotide
sequence into an amino

acid sequence

Practical Python
programming by example

Topics to be covered
• Programming Models

- Structured vs Object oriented

- Self Contained vs Library based
• Command line arguments

• Program logic

• Make executable

The Task
Write a “simple” program to translate a
DNA sequence into its protein equivalent

• Input - DNA sequence file
• Process - convert 3 letter bases to

appropriate AA code (one letter or 3 letter)
• Output - Protein sequence file

The Solution
Three different programs

1) Brute force “dumb” program

2) Modular program that uses language features

3) Program built on BioPython library

What is your input
RAW nucleotide data

all one line
multi lines

separated by CR (Unix/Linux)
separated by LF (Mac)
separated by LF+ CR (Windows)

Fasta formated data (has a header line “>name description”
all one line
multi lines

separated by CR (Unix/Linux)
separated by LF (Mac)
separated by LF+ CR (Windows)

Could be multiple records in the one file

What is your Output
File Format (Raw, Fasta, multi record)

One or three letter codes (ARG vs R)

Just the protein sequence or the DNA sequence on one line with the
three letter code beneath it

Do we just want the best protein (start to stop code) or a full
translation

Do we want the standard frame (starting at base 1) or an alternate
frame or all three

What about reverse compliment?

Lets not even think about sequences (genomic) with introns/exons

Process
DNA -> Protein or amino acids

but in biology DNA->RNA->protein

who cares - translation table is
often in RNA format. So do we
convert the Us in the matrix to Ts
or do we convert the DNA to RNA.

RNA Codons DNA Codons

Practically the choice is moot, UNLESS
you were going to translate ALOT of

sequences - then having to “transcribe”
all the DNA sequences into RNA before

translation would be a big waste

Versatility

“Hard coding” file names or data makes
life easy, but very limiting

Learn to parse the command line for
file names and parameters

Streaming data in/out is also an option

Python

Structure programming

or

Object oriented programming

Self contained

or

Use a Library (BioPython)

Python

You are in TOTAL control

No dependencies

Self contained

Must do it all the work yourself and must
test and validate (reinvent the wheel)

Non-standard

Write if all yourself

Prewritten code - simpler to implement

Standard (validate) code/function - tried and true

Must understand exactly what the library code does
and you must trust it

May not have enough control or granularity

Dependencies

Need to track the dependencies

Licensing/distirbution issues

Using Libraries

#!/usr/bin/env python

debug=1;

codon=[
"ATA","ATC","ATT","ATG","ACA","ACC","ACG","ACT","AAC","AAT","AAA","AAG","AGC","AGT","AGA","AGG","CTA","CTC","CTG","CTT","CCA","C
CC","CCG","CCT","CAC","CAT","CAA","CAG","CGA","CGC","CGG","CGT","GTA","GTC","GTG","GTT","GCA","GCC","GCG","GCT","GAC","GAT","GAA
","GAG","GGA","GGC","GGG","GGT","TCA","TCC","TCG","TCT","TTC","TTT","TTA","TTG","TAC","TAT","TAA","TAG","TGC","TGT","TGA","TGG"]

aminoacid=[
"I","I","I","M","T","T","T","T","N","N","K","K","S","S","R","R","L","L","L","L","P","P","P","P","H","H","Q","Q","R","R","R","R",
"V","V","V","V","A","A","A","A","D","D","E","E","G","G","G","G","S","S","S","S","F","F","L","L","Y","Y","*","*","C","C","*","W"]

line=""
dna=""
dna_strip=""
header=""
protein=""

with open("short.fa") as read_file:
 for line in read_file:
 if line[0] in ['>']:
 header=line
 else:
 dna=dna+line
seqlength=len(dna)

if (debug):
 print header
 print (dna)
 print seqlength

for i in range(0,seqlength,1):
 if (dna[i]!='\n' and dna[i]!='\r'):
 dna_strip=dna_strip+dna[i]
seq_length_strip=len(dna_strip)

if (debug):
 print dna_strip
 print seq_length_strip

for i in range(0, seq_length_strip,3):
 for j in range (0,len(codon),1):
 if (dna_strip[i:i+3] == codon[j]):
 protein=protein+aminoacid[j]

print header + protein

dumb_trans.py
Features:

• Hardcoded values
- Debug
- input file name

• Manual stripping of CR\LF
• Output to terminal (not file)
• Codons in separate lists
• Double loop
• No comments or usage info

#!/usr/bin/env python

Python program to convert DNA to protein
input and output are fasta files

import argparse

Get program arguements
def get_args():

"""*get_args* - parses program's arg values.
:returns: (*dict*) Contains user provided variables.
"""

parser = argparse.ArgumentParser()

Required Arguements
parser.add_argument("--input", "-i", help="Required data input fasta file. ", required=True,dest="input")
parser.add_argument("--output", "-o", help="Required data output fasta file. ", required=True,dest="output")

parser.add_argument("--debug", "-d", help="Optional debug flag",action='store_true')

return parser.parse_args()

routine to tranlate the sequence
def translate(seq):

protein =""
#table contains codon info as a dictionary

table = {
'ATA':'I', 'ATC':'I', 'ATT':'I', 'ATG':'M',
'ACA':'T', 'ACC':'T', 'ACG':'T', 'ACT':'T',
'AAC':'N', 'AAT':'N', 'AAA':'K', 'AAG':'K',
'AGC':'S', 'AGT':'S', 'AGA':'R', 'AGG':'R',
'CTA':'L', 'CTC':'L', 'CTG':'L', 'CTT':'L',
'CCA':'P', 'CCC':'P', 'CCG':'P', 'CCT':'P',
'CAC':'H', 'CAT':'H', 'CAA':'Q', 'CAG':'Q',
'CGA':'R', 'CGC':'R', 'CGG':'R', 'CGT':'R',
'GTA':'V', 'GTC':'V', 'GTG':'V', 'GTT':'V',
'GCA':'A', 'GCC':'A', 'GCG':'A', 'GCT':'A',
'GAC':'D', 'GAT':'D', 'GAA':'E', 'GAG':'E',
'GGA':'G', 'GGC':'G', 'GGG':'G', 'GGT':'G',
'TCA':'S', 'TCC':'S', 'TCG':'S', 'TCT':'S',
'TTC':'F', 'TTT':'F', 'TTA':'L', 'TTG':'L',
'TAC':'Y', 'TAT':'Y', 'TAA':'*', 'TAG':'*',
'TGC':'C', 'TGT':'C', 'TGA':'*', 'TGG':'W',

}

lookup requires that the sequence is a multiple of 3
seqlength=len(seq)
if (debug):

print seqlength
end = (int(seqlength/3))*3

lookup the AA for each codon in the DNA sequence
for i in range(0, end, 3):

codon = seq[i:i + 3]
protein+= table[codon]

return protein

rountine to read in the fasta file
def read_fasta(input_file):

dna=""
with open(input_file) as read_file:

for line in read_file:
if line[0] in ['>']:

header=line.rstrip()
else:

dna+= line.rstrip()
return [header,dna]

rountine to write out the fasta file
def write_fasta(name, sequence, output_file):

write_file = open(output_file, 'w')
write_file.write(name + ' translated\n')
seq_length = len(sequence)

for i in range(0, seq_length, 60):
write_file.write(sequence[i:i + 60] + '\n')

write_file.close()

################################ Start main () #################################

Parse arguements.
args = get_args()
infile = args.input.rstrip("")
outfile = args.output.rstrip("")
debug=args.debug
if (debug):

print (infile + "\t" + outfile)

#get the DNA sequence
seq = read_fasta(infile)

#translate the DNA sequence
prot = translate(seq[1])

if (debug):
print seq[1]
print seq[0] + "translated protein"
print prot

#write out the protein sequence
write_fasta(seq[0],prot,outfile)

better_trans.py
Features:

• Command line arguments
- Debug
- input/output file name

• Built in usage help
• Single codon dictionary
• Output to file
• Use of rstrip to clean lines
• Use of dictionary lookup
• Comments and help

Biopyton Library

Biopython is a set of freely available tools for biological
computation written in Python by an international team of
developers.

It is a distributed collaborative effort to develop Python
libraries and applications which address the needs of
current and future work in bioinformatics.

The source code is made available under the Biopython
License, which is extremely liberal and compatible with
almost every license in the world.

http://www.python.org/
https://github.com/biopython/biopython/blob/master/LICENSE.rst
https://github.com/biopython/biopython/blob/master/LICENSE.rst

Other Libraries of Note

NAME Description URL

NumPy
NumPy offers comprehensive
mathematical functions, random
number generators, linear algebra
routines, Fourier transforms, and
more.

https://numpy.org

SciPy

SciPy (pronounced “Sigh Pie”) is a
Python-based ecosystem of open-
source software for mathematics,
science, and engineering. In
particular, these are some of the core
packages:

https://www.scipy.org

Pandas
pandas is a fast, powerful, flexible
and easy to use open source data
analysis and manipulation tool,
built on top of the Python
programming language.

https://pandas.pydata.org

Jupyter
Project Jupyter exists to develop
open-source software, open-
standards, and services for
interactive computing across dozens
of programming languages.

https://jupyter.org

https://numpy.org
https://www.scipy.org
https://www.python.org/
https://pandas.pydata.org
https://jupyter.org

#!/usr/bin/env python3

#import libraries
from Bio import SeqIO , Seq
from Bio.SeqRecord import SeqRecord

#set file names
Infile="short.fa"
Outfile="protein.fa"
#read in the file
item=SeqIO.read(Infile,"fasta")

#get and set length (should be a multiple of 3)
seqlength=len(item.seq)
end = (int(seqlength/3))*3

#print some debugging
print (item.id)
print (item.seq)
print (seqlength)
print (end)

#do the translation
protein=SeqRecord(item.seq[0:end].translate(),id=item.id, description="translated protein")

#write out the fasta file
SeqIO.write(protein,Outfile,"fasta")

Code using Biopython
is only 9 lines long

bio_trans.py

Features:

• Command line arguments

- Debug

- input/output file name

• Built in usage help

• Use of std functions to read/write fast files

• Single line translation from built in codon

tables

• Comments

better_trans.py vs bio_trans.py

def get_args():
def read_fasta(input_file):
def translate(seq):
def write_fasta(name, sequence, output_file):

def get_args():

#read in the file
item=SeqIO.read(infile,”fasta")

#do the translation
protein=SeqRecord(item.seq[0:end].translate(),id=item.id, description="
translated”)

#write out the fasta file
SeqIO.write(protein,outfile,"fasta")

Notes
Make scripts executable
 % which python
First Line of script:
#!/usr/local/bin/python
#!/usr/local/bin/python3
#!/usr/bin/env python
#!/usr/bin/env python3
Command:
chmod a+x scriptname

Watch out for indentation
Consistency with Tabs and Spaces

Parse arguments from command line
input/output and flags

Algorithms
A process or set of rules to be followed
in calculations or other problem-solving
operations, especially by a computer.

Using indexes to speed up processing

Find all the restriction sites in a
DNA sequence

Simple brute force vs “smarter search”

In the following slides it is assumed that all
restriction sites are 4bp long and that bases in the
target sequence are equally distributed (25% A,G,C,T)

ATGGTAAGCTGCTGATGCTGCATCC
AGCT
AGCT

AGCT

AGCT
AGCT

AGCT
AGCT

Brute Force
(sliding window)

AGCT
AGCT

ATGGTAAGCTGCTGATGCTGCATCC

AGCT AGCT

A AA A A

AGCT AGCT

Smarter Search
(key off first base)

AGCT

1000 4-LETTER COMPARISONS * 100 ENZYMES=100,000

1000 1-LETTER COMPARISONS=1000
4 1-LETTER COMPARISONS * 100 =400#
250 4-LETTER COMPARISONS * 100 ENZYMES=25,000

1000 2-LETTER COMPARISONS=1000
16 2 LETTER COMPARISONS * 100 =1600#
63 4-LETTER COMPARISONS * 100 ENZYMES=6,300

8,900

26,500

100,000

11X SPEEDUP

BRUTE FORCE

INDEX ON EACH BASE (4)

INDEX ON EACH 2-MER (16)

 (#this could be recalculated in the enzyme file)

Optimization Considerations

Writing good, clean efficient code
is always a good goal, but when is
it worth optimizing the process

• Something that takes a long time  
Is it worth it to get a 10 fold
speedup if the programs takes
seconds - probably not

• Something that is run many many
times

